
An Approach to Experimentally Obtain Service
Dependability Characteristics of the Jgroup/ARM system

Bjarne E. Helvik1, Hein Meling2, and Alberto Montresor3

1 Department of Telematics, Q2S Centre, Norwegian University of Science and Technology,
O.S. Bragstadsplass 2A, N-7491 Trondheim, Norway, Email: bjarne@q2s.ntnu.no

2 Department of Electrical and Computer Engineering, University of Stavanger, N-4036 Stavanger,
Norway, Email: meling@acm.org

3 Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna,
Italy, Email: montresor@CS.UniBO.IT

Abstract. Jgroup/ARM is a middleware framework for operating dependable distributed
applications based on Java. Jgroup integrates the distributed object models of Java RMI
and Jini with the object group communication paradigm, enabling the construction of groups
of replicated server objects that provide dependable services to clients. ARM provides au-
tomated mechanisms for distributing replicas to host processors and recovering from replica
failures.
This paper describes an approach based on stratified sampling combined with fault injections
for estimating the dependability attributes of a service deployed using the Jgroup/ARM
middleware framework. A first experimental evaluation is performed focusing on a service
provided by a triplicated server, and indicative predictions of various dependability at-
tributes of the service are obtained. The evaluation shows that a very high availability and
MTBF may be achieved for services based on Jgroup/ARM.

Keywords: Fault Injection, Probabilistic Modeling and Evaluation, Measurement-based Evalua-
tion, Failure Recovery, System Fault Tolerance, FT Middleware.

1 Introduction

The group communication paradigm for the development of dependable distributed applications
has received considerable attention in recent years [19, 10, 20, 1]. Middleware frameworks based on
this paradigm have been integrated with modern distributed object models like Java RMI and
Jini [19, 6], and are currently being deployed in web-based business applications. Assessing and
evaluating the dependability characteristics of such frameworks, however, have not received an
equal amount of attention.

To fill this void, this paper presents an extensive evaluation of Jgroup/ARM [19, 5, 17], one
such framework. Jgroup enables the construction of dependable applications based on groups of
replicated server objects, that cooperate in order to provide dependable services to their clients.
Communication inside a group, as well as communication between clients and server objects, is
based on group method invocations that are executed by all members of the group. ARM builds on
Jgroup, providing mechanisms for the automated management of groups, by distributing replicas
to host processors and recovering from replica failures.

In the evaluation, dependability attributes are predicted through a stratified sampling [14]
approach. A series of experiments are performed; in each of them, one or more faults are injected
according to an accelerated homogeneous Poisson process. The approach defines strata in terms
of the number of near-coincident failure events that occur in a fault injection experiment. By
near-coincident is meant failures occurring before the previous is handled. Hence, a posteriori
stratification is performed where experiments are allocated to strata after they are carried out.
This as opposed to the more common prior stratification where strata are defined before the
experiment. Three strata are considered, i.e., single failures, and double and triple near-coincident



2 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

failures. The system under study is assumed to follow a crash failure semantics. For the duration
of an experiment, the events of interest are monitored, and post-experiment analysis is performed
to construct a single global timeline of fault injections and other relevant events. The timeline is
used to compute trajectories on a predefined state machine.

Depending on the number of injected faults, each experiment is classified into one of the strata,
and various statistics for the experiments are obtained. These statistical measures are then used as
input to an estimator of dependability attributes, including unavailability, system failure intensity
and down times. The approach may also be used to find periods with reduced performance due
to fault handling. An additional benefit of this thorough evaluation is that the fault handling
capability of Jgroup/ARM has been tested extensively, enabling the discovery of rarely occurring
implementation faults of both the distributed service under study and the Jgroup/ARM framework
itself.

Fault injection is a valuable and widely used means for the assessment of fault tolerant systems,
see for instance [2, 3, 11]. Previously, stratified sampling has been used in combination with fault
injection experiments to estimate fault tolerance coverage, as presented in [9]. Furthermore, for
testing specific parts of a system, fault injection triggers has been used on a subset of the global
state space [8]. These approaches are very useful in testing and evaluating specific aspects of a
system. However, our objective is to perform an overall evaluation of the system and its ability to
handle processor failures and hence, random injections of crash failures in a operational system
and post stratification is applied.

Delta-4 provide fault treatment mechanisms similar to those of ARM [21]. Fault injections were
also used in Delta-4 [4], focusing on removal of design/implementation faults in fault tolerance
mechanisms. However, we are not aware of reports on the evaluation of the fault treatment mech-
anisms in Delta-4, comparable to those presented herein. The fault injection scheme used in this
work, combined with post-experiment analysis also facilitate detection of implementation faults,
and in addition allows for systematic regression testing.

The AQuA [23, 22] framework is based on CORBA and also support failure recovery. Unlike
Jgroup/ARM, it does not deal with partition failures and relies on the open group model [13]
which limits its scalability with respect to supporting a large number of groups. The evaluation
of AQuA presented in [22] only provide the various delays involved in the recovery time. In this
paper, focus is on estimating dependability attributes of services deployed through ARM.

Organization. Section 2 provides an overview of the features of the Jgroup/ARM framework rel-
evant to this paper. Section 3 describes the target system for our measurements, while Section 4
presents the measurement setup and strategy, together with the associated estimators. Experi-
mental results are given in Section 5, and Section 6 concludes the paper.

2 The Jgroup/ARM Middleware

2.1 Jgroup

Jgroup [5] integrates the Java RMI and Jini distributed object models with the group communication
paradigm and includes numerous innovative features that make it suitable for developing modern
network applications. In Jgroup, applications are based on collections of replicated server objects
that cooperate to provide a dependable service. For increased flexibility, the group composition
is allowed to vary dynamically as new servers join and existing servers leave the group, either
voluntarily or by crashing. Members of the group are kept informed about the current group
composition through a group membership service (GMS).

Communication facilities for the object group are provided by the group method invocation
service (GMIS), that enables the execution of remote method invocations on all members of an
object group. Jgroup is unique in providing such uniform object-oriented programming interface to
govern all object interactions, including those within an object group as well as interactions with
external objects (clients). Both the GMS and the GMIS have been formally specified, admitting
formal reasoning about the correctness of applications based on these services [5, 19]. Due to space



An Approach to Experimentally Obtain Service Dependability Characteristics 3

constraints, however, in the following only a short informal description is provided, focusing on
the properties that are needed to understand this paper.

At any time, the membership of a group includes those servers that are operational and have
joined, but have not yet left the group. Asynchrony of the system and failures may cause each
member to have a different perception of the group’s current membership. The task of the GMS
is to notify members about variation in the group membership. These notification are called view
changes; we say that a node installs a view when such notification is delivered to it. A view consists
of a list of nodes along with a unique identifier, and corresponds to the group’s current composition
as perceived by members included in the view.

View changes must satisfy the following requirements [5]. First, the service must track changes
in the group membership accurately and in a timely manner such that installed views indeed
convey recent information about the group’s composition. Next, a view can be installed only after
agreement is reached on its composition among the servers included in the view. Finally, GMS
must guarantee that two views installed by two different servers be installed in the same order.
Note that the GMS defined for Jgroup admits coexistence of concurrent views, each corresponding
to a different partition of the communication network, thus making it suitable for partition-aware
applications.

Group method invocations must satisfy a variant of view synchrony, that has proven to be
an important property for reasoning about reliability in message-based systems [7]. Informally,
view synchrony requires that two servers that install the same pair of consecutive views agree to
complete the same set of invocations during the first view of the pair. In other words, before a new
view can be installed, all servers belonging to both the current and the new view have to agree on
the set of invocations they have completed in the current view.

The agreement properties of Jgroup (on view composition and invocation execution) enable a
server to reason about the state of other servers in the group using only local information such
the history of installed views and the set of completed group method invocations.

2.2 Autonomous Replication Management (ARM)

Most existing object group systems do not include mechanisms for distributing replicas to host
processors or recovering from replica failures. Yet, these mechanisms are essential for satisfying
application dependability requirements such as maintaining a fixed redundancy level. The ARM
framework provides a replicated dependability manager that enables the autonomic management
of complex applications based on object groups [15, 17]. When installed, an object group becomes
an “autonomous” entity being maintained by ARM, until it is explicitly removed. During its life,
an object group provides service to clients completely decoupled from the ARM infrastructure.

ARM handles both replica distribution, according to an extensible distribution policy, as well as
replica recovery, based on a replication policy. The replication policy is group-specific, and allows
the creation of object groups with varying dependability requirements and recovery needs. The
distribution policy is specific to each ARM deployment, and requires configuration of the set of
processors on which replicas can be created.

The ARM framework consists of several components: a system-wide replication manager (RM),
recovery modules deployed at each of the managed replicas, and object factories deployed at each
of the processors. Recovery modules are responsible of forwarding view change notifications to the
RM, that will interpret this information, potentially triggering group-specific actions like replica
creation or removal. Together, these components form a failure monitoring facility, whose goal is
to re-establish desired system dependability properties after failures.

Fig. 1 gives a simplified overview of a typical ARM-based deployment, and associated commu-
nication patterns. The system contains a single replicated service, named MS, that is managed
by ARM. In each of the groups, a leader replica is elected. Every view change event generated by
the group communication system is reported by the recovery module of the MS leader to the RM
using notifyEvent(). The RM interprets the received event, and the leader issues a createReplica()

or removeReplica() call to the object factories of a selected set of processors, depending on the
distribution policy. The RM provides an external interface, composed of method createGroup() and



4 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

invocation()

RM2

Client

MS1 MS2Management
Client

DR1 lookup(MS)

createGroup(MS)
removeGroup(MS)

RM1

RM3

MS3

DR2

notifyEvent(MS.view)

createReplica(MS)
removeReplica(MS) bind(MS)

DR3

Co-located

Fig. 1. The Jgroup/ARM architecture

removeGroup(), that enables the management client to start or stop services. Fig. 1 also illustrates
how servers bind their reference in the dependable registry (DR) service, and how clients query
this naming service to obtain information required to communicate with the server group through
method invocations. Note that replicas of the RM and DR groups are co-located on the same set of
nodes. For simplicity, the illustration of the target system (see Fig. 2) depict only the RM group.

In addition to the above, there is also a mechanism embedded in the recovery module for
recovering from scenarios in which the whole application group has failed. This is accomplished
using a lease renewal technique, requiring that the leader of each deployed group issues a renew
event periodically to prevent the RM group from triggering recovery.

The RM group provides self-recovery by reusing the same mechanisms that are in place to
track other applications, except for the lease renewal. Another important feature of ARM is its
ability to handle multiple concurrent failures, even failures of the ARM framework itself, as long
as at least one RM replica remains.

3 Target System

Fig. 2 shows the target system for our measurements. It consists of a cluster with a total of n = 8
identical processors, initially hosting a single server replica as shown. In the experiments, ARM
uses a distribution policy that will avoid co-locating two replicas of the same type, and at the
same time it will try to keep the replica count per processor to a minimum. Different services may
share the same processor.

The ARM infrastructure (i.e., the RM group) is located on processors (1-3). Processors 5-7 host
the monitored service (MS), while processors 4 and 8 host the additional service (AS). The latter
was added to assess ARM’s ability to handle multiple concurrent failure recoveries at different
groups, and to provide a more realistic scenario. Finally, an external machine hosts the experiment
engine that is used to run the experiments; for a description of the experiment engine, please
refer to Section 4.2. The replication policy for all the deployed services requires that ARM tries
to maintain a fixed redundancy level (RM:=3, MS:=3, AS:=2), with the RM group being at least
as fault-tolerant as the remaining components of the system.

The measurement engine enables the simultaneous observations of all services in the target
system, including the ARM infrastructure. In the following, however, we will focus our attention
on the MS service, that constitutes our subsystem of interest. This subsystem will be the subject of
our observations and measurements, with the aim of predicting its dependability attributes. Note
that focusing on a particular subsystem of interest is for simplifying presentation. Observations of



An Approach to Experimentally Obtain Service Dependability Characteristics 5

Group

RM1

#1

RM2

#2
RM3

#3

100 Mbps
Ethernet

AS1

#4

MS1

#5

MS2

#6

MS3

#7

AS2

#8

P4, 2.4GHz;  
Linux 2.6.3;  
Java JDK 5.0

notifyFailure(MS3)

MS4

Experiment
Engine

createGroup(MS)

 faultInjection() 

 createReplica(MS4) 

Fig. 2. Target system illustrated

several subsystems could be done simultaneously and estimates/predictions of all services and the
ARM infrastructure may be obtained during the same experiment.

3.1 The State Machine

There is a set of states which we can observe and which are sufficient to determine the dependability
characteristics of the service(s) regarded. Note that these are not necessarily all the operational
states of the complete system, but the set of states associated with the MS service. Thus, the
failure-recovery behavior of the MS service can be modeled according to the state diagram in
Fig. 3, irrespective of the states of the ARM and AS subsystems. The state diagram is not used
to control fault injections based on triggers on a subset of the global state space as in [8]; instead
it is only used during offline, a posteriori analysis of fault injection experiments based on random
sampling. In the analysis, the trajectories on the state model, and the time spent in each state is
used together with mathematical tools to determine the dependability characteristics of the MS
service.

We define a service to be unavailable (squared states) if none of the group members have
installed a view, and available (circular states) if at least one member has installed a view. Each
state is identified by X] and a tuple (xr, yv), were x is the number of installed replicas (r), and y
is the number of members in the current view (v) of the server group. In the diagram, we consider
only events that may affect the availability of the service, such as view changes, replica creations
as seen from the perspective of ARM, and replica failures as perceived by the corresponding MS
nodes that fails. View changes, in particular, are denoted by view-i, where i is the cardinality of
the view. In addition, fault injection events may occur in any of the states, however for readability
they are not included in the figure.

As a sample failure-recovery behavior, consider the trajectory composed of the state transitions
with dashed lines, starting and ending in X0. This is the most common trajectory. For simplicity
the view-i events in the diagram reflect the series of views as seen by ARM, and do not consider
the existence of concurrent views. So, after recovering from a failure (moving from state X4 to
state X3), the newly created member will install a singleton view and thus be the leader of that
view, sending a view-1 event to ARM (from state X3 to state X6). Only after this installation
(required by the view synchrony property) a view-3 event will be delivered to ARM, causing a
transition from state X6 to X0. The above simplification does not affect the availability of the
service. It is assumed that client requests are only delayed during failure-recovery cycles as long
as the service is in an operational state [16]. Such delays are not considered part of the availability
measure as opposed to [12]. Further analysis of these client perceived delays is in preparation and
will be included in a future paper.



6 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

3r, 3v
X0

2r, 2v
X4

2r, 3v
X1

2r, 1v
X7

1r, 3v
X2

3r, 2v
X3

Replica
created

Replica
failed

1r, 1v
X8

0r, 0v
D0

3r, 1v
X6

Replica
created

1r, 2v
X5

Replica
failed

Replica
failed Replica

failed

Replica
failed

Replica
failed

Replica
failedReplica

failed

View-1

View-2

Replica
failed

Replica
created

Replica
created

OD-View-2

OD-View-2

View-2

View-3

View-3 View-1

View-1/
OD-View-3

View-1

View-1

View-1

View-2

View-1

3r, 0v
D3

1r, 0v
D1

2r, 0v
D2

Replica
created

Replica
created

Replica
created

View-1

View-1

View-1

Replica
failed

Replica
failed

View-1

OD-View-2

Replica
failed

Fig. 3. State diagram illustrating a sample of the possible state changes of the MS service being measured.

Notice that some of the states have self-referring transitions on view change events. These are
needed for several reasons, one being that the ARM framework may see view change notifications
from several replicas, before they have formed a common view. In addition, ARM will on rare
occasions receive what we call outdated views, that are due to minor inaccuracies in our measure-
ments. For instance, a view-3 event may occur while in state X7. This can occur if at some point
we are in the X6 state, when a group member sends out a notification of a view-3 event, and
shortly after another member of that group fails and logs a ReplicaFailed event. However, given
that the view-3 event is still in the “air”, and has not yet been logged, the ReplicaFailed event
will appear to have occurred before the view-3 event in the trace. To compensate for this behavior,
we have inserted additional view-i transitions, prefixed by OD, in some of the states.

Notice also the view-2 transition from X2 to X5. This is also due to an outdated view, and can
occur if ARM triggers recovery on a view-2 event before receiving a view-1 event. Note that the
state transitions in the diagram may not be complete as presented, however, no other transitions
have been observed during our experiments. In the following, we will assume that the service has
been initialized correctly into state X0, and thus we do not consider the initial transitions leading
to this state.

4 Measurements

This section give motivation for our measurement approach. Furthermore, we discuss in detail the
sampling scheme used to assess the fault handling capability of the Jgroup/ARM framework and
to provide input to the prediction of dependability attributes.



An Approach to Experimentally Obtain Service Dependability Characteristics 7

4.1 Experiment Outline

In each experiment run, one or more faults are injected. The failure insertion pattern is as if it
emerged from a Poisson process. There may be multiple near-coincident failures before the system
stabilizes, i.e., a new failure may be inserted before the previous has been completely handled.
This will “simulate” the rare occurrence of nearly coincident failures which may bring the service
down. The Poissonian character of the inserted failures is achieved through generation of fault
injection times and the selection of the set of processors in which to inject faults, according to a
uniform distribution. See the Sampling Scheme in Section 4.3 on how this yields a Poisson fault
process. Processors to crash are drawn from the entire target system. Hence, the injected faults
may affect the ARM infrastructure itself, the monitored subsystem (MS) or the additional service
(AS), all of which are being managed by the ARM framework. However, only state trajectories for
the monitored subsystem are computed, and these are used for predicting various dependability
attributes of MS. A beneficial “side-affect” of this sampling scheme is that it has shown to be
very useful with respect to performing extensive testing of the fault handling capabilities of the
Jgroup/ARM. During previous experiments several design and implementation faults have been
revealed. In the experiments, we perform at most k = 3 fault injections during a run. Since
initially all processors in the target system have allocated replicas, failures will cause ARM to
reuse processors as shown in Fig. 2 where the replica of processor 7 is recreated at processor 3.

Time Constants Considered. Assuming services are deployed using the ARM framework, the
crashed processors will have a processor recovery time (tPR) which is much longer than the service
recovery time (tSR). Further, we assume that the processors will stay crashed for the remaining
part of the experiment. In other words, a service replica will typically be restarted on a different
processor as soon as ARM concludes that a processor crash has occurred. However, the time until
the processors are recovered, is assumed to be negligible compared to the time between failures
(tBF) in a real system. Thus in the predictions it is assumed that the occurrence intensity of new
trajectories (i.e. first failure in a fully recovered system) is nλ, neglecting the short interval with a
reduced number of processors between tSR and tPR. Fig. 4 shows these relations, starting with the
first failure event ti1 . Furthermore, there will be no resource exhaustion, i.e., there are sufficient
processors to execute all deployed services, including the ARM infrastructure.

Tmax

tBFi 1
t tSR tPR

tBF Time between failure
tPR Processor recovery time
tSR Service recovery time

i 1
t First failure

t

Fig. 4. The relation between the service and processor recovery periods and the time between failures.

The Failure Trajectory. A failure trajectory is the series of events and states of the monitored
subsystem following the first processor failure and until all the concurrent failure activities have
concluded and all subsystems are recovered and fully replicated. The trajectory will always start
and end in state X0 (see Fig. 3). If the first processor failure affects the monitored service, it
causes it to leave its steady operational state X0 and if it is the last service to recover, we will
see a return to the same state like in Fig. 5.

We denote the jth event in the ith trajectory by ij , the time it takes place by tij
and the state

after the event by Xij (corresponds to the states in Fig. 3). Note that all relevant events in the
system are included, and a failure or another event does not necessarily cause a change of state in
the monitored subsystem. For instance, the failure of a processor which supports only the ARM



8 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

( )tXi

i 1
t i 3

t i 4
t i 5

t i 6
ti 2

t
Ti

Tmax

t

X6

X4

X1

X0

X3

Fig. 5. Sample failure trajectory, where all but failure event ti3 affects the subsystem of interest. This is
the most common failure trajectory.

or AS subsystems, will not necessarily result in a change of state in the MS service, but it is likely
that it will influence the handling of immediately preceding or succeeding failures affecting the
service. Let Xi(t) denote the state of the MS service at time t in the ith failure trajectory,

Xi(t) =
{

Xij
tij

< t ≤ tij+1 , j = 1, . . . ,mi

X0 Otherwise

were mi is the last event of the ith trajectory before all concurrent failure activities have concluded,
and all subsystems are fully replicated. During the measurements a trajectory sample is recorded
as the list

Xi =
{
X0, ti1 , Xi1 , ti2 , Xi2 , ti3 , . . . , timi

, X0
}

.

Note that we record also trajectories for which the MS service does not leave the X0 state.

Characteristics Obtained from a Failure Trajectory. The unknown probability of failure
trajectory i is pi. For brevity we denote the duration of trajectory i by Ti = timi

− ti1 , and its
expectation Θ = E(T ) =

∑
∀i piTi.

In the following, let Yi denote a sample from the experiment. The sample may be obtained
from the trajectory by some function g, i.e., Yi = g(Xi). The duration of a trajectory presented
above may serve as an example. Determining the dependability attributes of the system are other
possible samples that can be extracted from the experiment data. To determine these, it is assumed
that the failure rate in the X0 state is nλ, that the expected sojourn time in this state is much
longer than the expected trajectory duration, and that a particular trajectory is independent of
the previous trajectory.

Unavailability. The time spent in a down state during a trajectory is given by

Y d
i = g(Xi) =

mi∑
j=1

I(Xij
∈ F)(tij+1 − tij

), (1)

where I(· · ·) is the indicator function and F is the set of down states (the squared states in Fig. 3).
Given that the periods in state X0 (the OK-periods) alternate with the failure trajectories, and
are independent and much longer than the failure trajectory periods, we can obtain a measure for
the service unavailability

Û =
E(Y d)

E(Y d) + (nλ)−1
≈ E(Y d)nλ.

Note that the collective failure intensity of all processors when there are no faults in the system, is
only marginally different from the intensity of trajectories. The difference is due to the restoration
of failed processors during a trajectory, and is negligible.



An Approach to Experimentally Obtain Service Dependability Characteristics 9

Probability of failure, reliability. In this case, let Y f
i = 1 if trajectory i visits one or more down

states, otherwise let Y f
i = 0.

Y f
i = g(Xi) = I(∃Xij

∈ F)j=1,....,mi
. (2)

Disregarding multiple down periods in the same trajectory and assuming that system failures are
rare, it is found that the system failure intensity is approximately

Λ̂ =
1

MTBF
≈ E(Y f )

E(Y d) + (nλ)−1
≈ E(Y f )nλ.

In addition, the predicted reliability function R(t) = exp(−Λ̂t) as well as the mean down time
MDT = Û/Λ̂ may be obtained. MDT and the down time distribution may of course also be
measured directly from the trajectories visiting the set of down states.

The above examples are chosen for illustration and the assumptions made for simplicity. By
introducing rewards associated with the states and transitions, we may obtain predictions of far
more comprehensive performability measures of the system.

4.2 The Experiment Engine

The experiment engine is used to perform repeated experiment runs. At each run, numerous
tasks are executed; (1) bootstrap the object factories onto the processors in the target system,
(2) bootstrap the ARM infrastructure, (3) deploy the initial MS and AS replicas, (4) perform fault
injections, according to the scheme described in Section 4.3, (5) shutdown the experiment run,
and finally, (6) collect and remove log files from the target system.

To be able to compute a trajectory of states and the time spent in each state, Jgroup/ARM
and the MS service has been instrumented with a simple event logging mechanism to be able to
generate a local trace of events occurring at each of the processors in the target system. The events
in a trace correspond to the events of the state diagram in Fig. 3. Each event trace contains the set
of events and their occurrence time (in milliseconds), in addition to various details associated with
the event. This level of accuracy is sufficient for our evaluation, as the time values considered (tSR)
are in the range 7-30 seconds. The occurrence time of an event correspond to the local clock of the
processor at which the event occurred. The processor clocks in the target system are synchronized
using NTP [18].

After each experiment, the log files generated are collected from the target system and stored
at the experiment engine machine, for the offline analysis. In this analysis, the independent event
traces collected from different machines are merged into a single global timeline of events, that
correspond to an approximation of the actual state transitions of the whole system. Given this
global event trace, we can compute the trajectory of visited states and the time spent in each
of the states. These trajectories allow us to classify the experiments, and to predict a number of
dependability attributes for the monitored service, as discussed previously.

4.3 Experimental Strategy

The experimental strategy is based on a post stratified random sampling approach. For an intro-
duction to stratified sampling see for instance [14]. This section elaborates on how the experiments
are classified in different strata, and how the sampling is performed.

Stratification. Only some of the events along a failure trajectory will actually be failure events.
The first event of each trajectory will always be a failure, and in a typical operational environ-
ment usually the only one. However, in the experiments we consider also multiple near-coincident
failures which may require concurrent failure handling. In considering such failure scenarios, our
experimental strategy is based upon subdividing the trajectories into strata Sk based on the num-
ber of failure events k in each of the trajectories. Each of the strata are sampled separately, and the



10 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

number of samples in each stratum are random variables determined a posteriori. This is different
from previous work [9] in which the number of samples in each stratum is fixed in advance.

An example failure trajectory reaching stratum S3 drawn from the experiment data is shown
in Fig. 6. Three near-coincident fault injections were performed in this particular experiment. The
first and last failure affect the MS service, while the second affect the RM service. The RM failure
and its related events, as indicated on the curve, do not cause state transitions in the state diagram
(Fig. 3) of the MS service.

( )tXi

X5

X4

X1

X0

X8

X7

X6

t

X3

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Injected crash faults in the target system

Seconds

R
M

 re
pl

ic
a 

fa
ile

d

M
S 

re
pl

ic
a 

fa
ile

d

M
S 

Vi
ew

−2
R

M
 V

ie
w

−2

M
S 

re
pl

ic
a 

fa
ile

d

R
M

 re
pl

ic
a 

cr
ea

te
d

M
S 

Vi
ew

−1
R

M
 V

ie
w

−1
R

M
 V

ie
w

−3

M
S 

re
pl

ic
a 

cr
ea

te
d

M
S 

re
pl

ic
a 

cr
ea

te
d

M
S 

Vi
ew

−1
M

S 
Vi

ew
−1

M
S 

Vi
ew

−2
M

S 
Vi

ew
−3

Fig. 6. Sample failure trajectory reaching stratum S3 plotted on an approximate time scale. Only two of
three injected faults affect the MS service. The second fault injection affect the RM service.

The collected samples for each stratum are used to obtain statistics for the system in that
stratum, e.g., the expectation E(Y |Sk). The expectation and the variance of the length of the
trajectory within a stratum Sk are denoted Θk = E(T |Sk) and σk = V ar(T |Sk), respectively.
Estimates may then be obtained by

E(Y ) =
∞∑

k=1

E(Y |Sk)πk ≈
3∑

k=1

E(Y |Sk)πk, (3)

where πk =
∑
∀i∈Sk

pi is the probability of a trajectory in stratum Sk. Recall that k represents
the number of possible concurrent failure events, and in (3), we replace ∞ in the summation
with 3, since we only consider up to 3 concurrent failure events. Expressions for πk are derived in
Section 4.4.

If upper and lower bounds for Y exist, and we are able to determine πk, k > 3, we may also
determine bounds for E(Y ) without sampling the higher-order strata, i.e.,

3∑
k=1

E(Y |Sk)πk + inf(Y )
∑
k>3

πk ≤ E(Y ) ≤
3∑

k=1

E(Y |Sk)πk + sup(Y )
∑
k>3

πk.

Since the probability of k concurrent failures is much greater than k + 1 failures, πk � πk+1, the
bounds will be tight, and for the estimated quantities the effect of estimation errors are expected
to be far larger than these bounds. The effect of estimation errors is discussed in Section 4.4.

Sampling Scheme. Under the assumption of a homogeneous Poisson fault process with intensity
λ per processor, it is known that if we have k−1 faults (after the first failure starting a trajectory)
of n processors during a fixed interval [0, Tmax〉, these will occur



An Approach to Experimentally Obtain Service Dependability Characteristics 11

– uniformly distributed over the set of processors, and
– each of the faults will occur uniformly over the interval [0, Tmax〉.

Note that, all injected faults will manifest itself as a failure, and thus the two terms are used
interchangeably. In performing experiments, the value Tmax is chosen to be longer than any
foreseen trajectory of stratum Sk. However, it should not be chosen excessively long, since this
may result in too rare observations of higher-order strata.

k*

T|k = 3( )T|k = 2( )T|k = 1( )

Processor failures

Tmaxi 1
t imi

t

Ti

i 2
fi 1

f i 3
f

t

3

2

1

(a) Fault injections causing the failure tra-
jectory into higher-order strata.

k*

T|k = 1( ) T|k = 1( ) T|k = 2( )

Processor failures

imi
t Tmaxi 1

t

Ti

i 3
fi 2

fi 1
f

t

3

2

1

(b) Failure trajectory that completes be-
fore reaching higher-order strata.

Fig. 7. Sample failure trajectories with different fault injection times.

In the following, let (T |k = l) denote the duration of a trajectory if it completes in stratum
Sl, as illustrated in Fig. 7(a), and let fil

denote time of the lth failure, relative to the first failure
event in the ith failure trajectory. That is, we assume the first failure occur at fi1 = 0 and that
fil

> fi1 , l > 1. To obtain dependability characteristics for the system, we inject k failures over
the interval [0, Tmax〉. This leads to the following failure injection scheme for trajectory i, which
may reach stratum Sk. However, not all trajectories obtained for experiments with k > 1 failure
injections will reach stratum Sk, since a trajectory may reach (T |k = 1) before the second failure
(fi2) is injected. That is, recovery from the first failure may complete before the second failure
injection, as illustrated in Fig. 7(b). Such experiments contain multiple trajectories, however, only
the first trajectory is considered in the analysis to avoid introducing a bias in the results.

1. The first failure, starting a failure trajectory i, is at fi1 = 0. The following k − 1 failure
instants are drawn uniformly distributed over the interval [0, Tmax〉 and sorted such that
fiq ≤ fiq+1 yielding the set {fi1 , fi2 , . . . , fik

}. Let k∗ denote the reached stratum, and l is the
index denoting the number of failures injected so far. Initially, set k∗ := 0 and l := 1.

2. Fault l ≤ k is (tentatively) injected at fil
in processor zl ∈ [1, n] with probability 1/n.

(a) If trajectory i has not yet completed, i.e., fil
< Ti, then set l := l + 1 and

i. If the selected processor has not already failed zl /∈ {zw|w < l}: Inject fault at fil
and

set k∗ := k∗ + 1
ii. Prepare for next fault injection, i.e., goto 2.

(b) Otherwise the experiment ended “prematurely”.

3. Conclude and classify as a stratum Sk∗ measurement.

The already failed processors are kept in the set to maintain the time and space uniformity
corresponding to the constant rate Poisson process. Although k failures are not injected in a
trajectory, the pattern of injected failures will be as if they came from a Poisson process with a
specific number (k∗) of failures during Tmax. Hence, the failure injections will be representative
for a trajectory lasting only a fraction of this time.



12 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

4.4 Estimators

Strata Probabilities. In a real system, the failure intensity λ will be very low, i.e., λ−1 � Tmax.
Hence, we may assume the probability of a failure occurring while the system is on trajectory i ∈ S1

is Ti(n− 1)λ. Hence, the probability that a trajectory (sample) belonging to a stratum Sk, k > 1
occurs, given that a stratum S1 cycle has started is∑

∀i∈S1
piTi(n− 1)λ∑
∀i∈S1

pi
=

∑
k>1 πk

π1
.

Due to the small failure intensity, we have that
∑

k>1 πk ≈ π2 and the unconditional probability
of a sample in stratum S2 is approximately

π2 = (n− 1)λΘ1π1. (4)

This line of argument also applies for the probability of trajectories in stratum S3. However, in
this case we must take into account the first failure occurrence. Let i ∈ Sk ∧Xi(tx) ./ f denote a
trajectory of stratum Sk, where a failure occurs at tx. The probability that a trajectory belonging
to stratum Sk, k > 2 occurs, given that a stratum S2 cycle has started is, cf. Fig. 7(a):∫ ∑

∀i∈S2∧Xi(tx)./f pi(Ti − tx)(n− 2)λdtx∑
∀i∈S2

pi
=

∑
k>2 πk

π2
. (5)

Ignoring the constant part of (5) for now; the first term on the left hand side of (5) is not depending
on tx and may be reduced as follows:∫ ∑

∀i∈S2∧Xi(tx)./f piTidtx∑
∀i∈S2

pi
=

∑
∀i∈S2

piTi∑
∀i∈S2

pi
= Θ2.

For the second term we have, slightly rearranged:∫
tx

∑
∀i∈S2∧Xi(tx)./fpidtx.

The probability of having a stratum S2 trajectory experiencing its third failure at tx is the
probability that the first (and second) failure has not been dealt with by tx, i.e., the duration
Tj > tx, j ∈ S1 and that a new failure occurs at tx. These two events are independent. Up to
the failure time tx, the trajectories of strata S1 and S2 passing this point are identical. Hence,∑
∀i∈S2∧Xi(tx)./fpi = Pr{Tj > tx}π1(n− 1)λ and by partial integration,∫

tx Pr{Tj > tx}dtx =
1
2
E(T 2

j |j ∈ S1) =
1
2
(Θ2

1 + σ1).

Combining the above, inserting it into (5), using that
∑
∀i∈S2

pi = π2 and that due to the small
failure intensity

∑
k>2 πk ≈ π3, the unconditional probability of a trajectory in stratum S3 ap-

proximately becomes:

π3 = (n− 2)λ(Θ2π2 −
1
2
(Θ2

1 + σ1)π1(n− 1)λ)

= (n− 1)(n− 2)λ2(Θ2Θ1 −
1
2
(Θ2

1 + σ1))π1. (6)

Since we have that 1 > π1 > 1− π2 − π3 and as argued above, a sufficiently accurate estimate for
π1 may be obtained from the lower bound since 1 ≈ π1 ≈ 1− π2 − π3, or slightly more accurately
by solving πi from (4), (6) and 1 = π1 + π2 + π3.



An Approach to Experimentally Obtain Service Dependability Characteristics 13

Estimation Errors. The estimation errors or the uncertainty in the obtained result is computed
using the sectioning approach [14]. The experiments are subdivided into N ∼ 10 independent runs
of the same size. Let Êl(Y ) be the estimate from the lth of these; then:

Ê(Y ) =
1
N

N∑
l=1

Êl(Y ), V̂ar(Y ) =
1

(N − 1)

N∑
l=1

(Êl(Y 2)− Ê2(Y )).

5 Experimental Results

This section presents experimental results of fault injections on the target system. A total of
3000 experiment runs were performed, aiming at 1000 per stratum. Each experiment is classified
as being of stratum Sk, if exactly k fault injections occur before the experiment completes (all
services are fully recovered). The results of the experiments are presented in Table 1. Some runs
“trying to achieve higher order strata” (S3 and S2) fall into lower order due to injections being
far apart, cf. Fig. 7(b), or addressing the same processor.

Table 1. Results obtained from the experiments (in milliseconds).

Classification Count Θk = E(T |Sk) sd=
√

σk Θk, 95% conf.int.

Stratum S1 1781 8461.77 185.64 (8328.98, 8594.56)

Stratum S2 793 12783.91 1002.22 (12067.01, 13500.80)

Stratum S3 407 17396.55 924.90 (16734.96, 18058.13)

Of the 3000 runs performed, 19 (0.63%) were classified as inadequate. In these runs one or more
of the services failed to recover (16 runs), or they behaved in an otherwise unintended manner.
In the latter three runs, the services did actually recover successfully, but the runs were classified
as inadequate, because an additional (not intended) failure occurred. The inadequate runs are
dispersed with respect to experiments seeking to obtain the various strata as follows; two for
S1, 6 for S2, and 11 for stratum S3. One experiment resulted in a complete failure of the ARM
infrastructure, caused by three fault injections occurring within 4.2 seconds leaving no time for
ARM to perform self-recovery. Of the remaining, 13 were due to problems with synchronizing the
states between the RM replicas, and 2 were due to problems with the Jgroup membership service.
Even though none of the inadequate runs reached the down state, D0, for the MS service, it is
likely that additional failures would have caused a transition to D0. To be conservative in the
predictions below, all the inadequate runs are considered to have trajectories visiting down states,
and causing a fixed down time of 5 minutes.

Fig. 8 shows the probability density function (pdf) of the recovery periods for each of the
strata. The data for stratum S1 cycles indicate that it has a small variance. However, 7 runs
have a duration above 10 seconds. These durations are likely due to external influence (CPU/IO
starvation) on the machines in the target system. This was confirmed by examining the cron
job scheduling times, and the running time of those particular runs. Similar observations can be
identified in stratum S2 cycles, while it is difficult to identify such observations in S3 cycles. The
pdf for stratum S2 in Fig. 8(b) is bimodal, with a top at approx. 10 and another at approx. 15.
The density of the left-most part is due to runs with injections that are close, while the right-
most part is due to injections that are more than 5-6 seconds apart. The behavior causing this
bimodality is due to the combined effect of the delay induced by the view agreement protocol, and
a 3 second delay before ARM triggers recovery. Those injections that are close tend to be recovered
almost simultaneously. The pdf for stratum S3 has indications of being multimodal. However, the
distinctions are not as clear in this case.



14 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 8  9  10  11  12  13  14  15
Duration of failure trajectories in strata 1 cycles (seconds)

Probability Density Function; {init=3, min=3} configuration

(a) Stratum S1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 10  15  20  25
Duration of failure trajectories in strata 2 cycles (seconds)

Probability Density Function; {init=3, min=3} configuration

(b) Stratum S2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10  12  14  16  18  20  22  24  26
Duration of failure trajectories in strata 3 cycles (seconds)

Probability Density Function; {init=3, min=3} configuration

(c) Stratum S3

Fig. 8. Probability density function of trajectory durations for the various strata.



An Approach to Experimentally Obtain Service Dependability Characteristics 15

Given the results of the experiments, we are able to compute the expected trajectory durations,
Θ1, Θ2 and the variance σ1 as shown in Table 1, and the unconditional probabilities π2 and π3

given in (4) and (6) for various processor mean time between failures (MTBF=λ−1), as shown in
Table 2. The low probabilities of a second and third near-coincident failure is due to the relatively
short recovery time (trajectory durations) for strata S1 and S2. Table 2 compares these values
with a typical processor recovery (reboot) time of 5 minutes and manual recovery time of 2 hours.

Table 2. Computed probabilities, unavailability metric and the system MTBF.

Experiment Recovery Period Processor Recovery (5 min.) Manual Processor Recovery (2 hrs.)

Processor Mean Time Between Failure (MTBF=λ−1) (in days)

100 200 100 200 100 200

π1 0.99999314 0.99999657 0.99975688 0.99987845 0.99412200 0.99707216

π2 6.855602 · 10−6 3.427801 · 10−6 2.430555 · 10−4 1.215278 · 10−4 5.833333 · 10−3 2.916667 · 10−3

π3 4.072921 · 10−11 1.018230 · 10−11 5.595341 · 10−8 1.398835 · 10−8 4.466146 · 10−5 1.116536 · 10−5

Û 4.671318 · 10−7 2.335617 · 10−7 2.777102 · 10−4 1.388720 · 10−4 6.627480 · 10−3 3.323574 · 10−3

Λ̂−1 20.3367 yrs 40.6741 yrs - - - -

Of the 407 stratum S3 runs, only 3 reached a down state. However, we include also the 19 in-
adequate runs as reaching a down state. Thus, Table 2 provides only indicative results of the
unavailability (Û) and MTBF (Λ̂−1) of the MS service, and hence confidence intervals for these
estimates are omitted. The results show as expected, that the two inadequate runs from stratum
S1 included with a service down time of 5 minutes, completely dominates the unavailability of the
service. However, accounting for near-coincident failures may still prove important once the re-
maining deficiencies in the platform have be resolved. Although the results are indicative, it seems
that very high availability and MTBF may be obtained for services deployed with Jgroup/ARM.

6 Conclusions

This paper has presented an approach for the estimation of dependability attributes based on the
combined use of fault injection and a novel post stratified sampling scheme. The approach has
been used to assess and evaluate a service deployed with the Jgroup/ARM framework. The results
of the experimental evaluation indicate that services deployed with Jgroup/ARM can obtain very
high availability and MTBF.

Thus far, our automated fault injection tool has proved exceptionally useful in uncovering at
least a dozen subtle bugs, allowing systematic stress and regression testing. In future work, we
intend to improve the Jgroup/ARM framework further to reduce the number of service failures due
to platform deficiencies. The approach may also be extended to provide unbiased estimators, al-
lowing us to determine confidence intervals also for dependability attributes given enough samples
visiting the down states.

References

1. Y. Amir, C. Danilov, and J. Stanton. A Low Latency, Loss Tolerant Architecture and Protocol for
Wide Area Group Communication. In Proc. of the Int. Conf. on Dependable Systems and Networks,
New York, June 2000.

2. J. Arlat, M. Aguera, , L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell. Fault
Injection for Dependability Validation: A Methodology and Some Applications. IEEE Transactions
on Software Engineering, 16(2):166–182, Feb. 1990.



16 Bjarne E. Helvik, Hein Meling, and Alberto Montresor

3. J. Arlat, M. Aguera, Y. Crouzet, J.-C. Fabre, E. Martins, and D. Powell. Experimental Evaluation of
the Fault Tolerance of an Atomic Multicast System. IEEE Transactions on Reliability, 39(4):455–467,
Oct. 1990.

4. D. Avresky, J. Arlat, J.-C. Laprie, and Y. Crouzet. Fault Injection for Formal Testing of Fault
Tolerance. IEEE Transactions on Reliability, 45(3):443–455, Sept. 1996.

5. Ö. Babaoğlu, R. Davoli, and A. Montresor. Group Communication in Partitionable Systems: Specifi-
cation and Algorithms. IEEE Transactions on Software Engineering, 27(4):308–336, Apr. 2001.

6. B. Ban. JavaGroups – Group Communication Patterns in Java. Technical report, Dept. of Computer
Science, Cornell University, July 1998.

7. K. Birman. The Process Group Approach to Reliable Distributed Computing. Commun. ACM,
36(12):36–53, Dec. 1993.

8. R. Chandra, R. M. Lefever, K. R. Joshi, M. Cukier, and W. H. Sanders. A Global-State-Triggered
Fault Injector for Distributed System Evaluation. IEEE Transactions on Parallel and Distributed
Systems, 15(7):593–605, July 2004.

9. M. Cukier, D. Powell, and J. Arlat. Coverage Estimation Methods for Stratified Fault-Injection. IEEE
Transactions on Computers, 48(7):707–723, July 1999.

10. P. Felber. The CORBA Object Group Service: a Service Approach to Object Groups in CORBA. PhD
thesis, Ecole Polytechnique Fédérale de Lausanne, Jan. 1998.

11. U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using fault injection
by heavy-ion radiation. In Proc. of the 19th Int. Symp. on Fault-Tolerant Computing, pages 340–347,
Chicago, IL, USA, June 1989.

12. K. R. Joshi, M. Cukier, and W. H. Sanders. Experimental Evaluation of the Unavailability Induced
by a Group Membership Protocol. In Proc. of the 4th European Dependable Computing Conference,
pages 140–158, Toulouse, France, Oct. 2002.

13. C. Karamanolis and J. Magee. Client-Access Protocols for Replicated Services. IEEE Transactions
on Software Engineering, 25(1), Jan. 1999.

14. P. A. W. Lewis and E. J. Orav. Simulation Methodology for Statisticians, Operation Analyst and
Engineers, volume 1 of Statistics/Probability Series. Wadsworth & Brooks/Cole, 1989.

15. H. Meling and B. E. Helvik. ARM: Autonomous Replication Management in Jgroup. In Proc. of the
4th European Research Seminar on Advances in Distributed Systems, Bertinoro, Italy, May 2001.

16. H. Meling and B. E. Helvik. Performance Consequences of Inconsistent Client-side Membership
Information in the Open Group Model. In Proc. of the 23rd Int. Performance, Computing, and
Communications Conf., Phoenix, Arizona, Apr. 2004.

17. H. Meling, A. Montresor, Ö. Babaoğlu, and B. E. Helvik. Jgroup/ARM: A Distributed Object Group
Platform with Autonomous Replication Management for Dependable Computing. Technical Report
UBLCS-2002-12, Dept. of Computer Science, University of Bologna, Oct. 2002.

18. D. L. Mills. Network Time Protocol (Version 3); Specification, Implementation and Analysis, Mar.
1992. RFC 1305.

19. A. Montresor. System Support for Programming Object-Oriented Dependable Applications in Parti-
tionable Systems. PhD thesis, Dept. of Computer Science, University of Bologna, Feb. 2000.

20. P. Narasimhan. Transparent Fault Tolerance for CORBA. PhD thesis, University of California, Santa
Barbara, Dec. 1999.

21. D. Powell. Distributed Fault Tolerance: Lessons from Delta-4. IEEE Micro, pages 36–47, Feb. 1994.
22. Y. Ren. AQuA: A Framework for Providing Adaptive Fault Tolerance to Distributed Applications.

PhD thesis, University of Illinois at Urbana-Champaign, 2001.
23. Y. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. Karr, P. Rubel, C. Sabnis, W. H. Sanders,

R. E. Schantz, and M. Seri. AQuA: An Adaptive Architecture that Provides Dependable Distributed
Objects. IEEE Transactions on Computers, 52(1):31–50, Jan. 2003.


